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The influence of spin fluctuations on the temperature 
dependence of the magnetization in ZrZn, 

0 M Tolkachev and N I Yurasov 
P N Lebedev Institute, Moscow. USSR 

Received 1 November 1989, in final form 5 December 1990 

Abstract. We consider the inRucnce of spin Iluctumonr on the temperalure dependence of 
thc magnetization in an mnennl  magnet We c3.cut3te the temperature deptndence of 
the magnctcalion, paying p3ruculsr 311ention to the effects of the differing temperature 
dependences of the transersc ( m i ,  2nd longitud~nsl \m i ,  m3gnerlc Ructuations. We find 
ihdt o ~ e r  a uidc r3ng.e In temperature the magnziiz3tion obeys ihr mixed ldu .U?. .If; - 
I - 4(T/T) ' '  -ACT T.)?. Me s e  this ICSUII to exp.dm the ubszned temperature depen- 
dence of the mapnctiwtion in the w 3 k  itinerant magnet ZrZn?. 

1. Introduction 

There has been, and still is, great interest in understanding the temperature dependence 
of the spontaneous magnetization and magnetic susceptibility observed in weakly ferro- 
magnetic metals [ 1 4 .  Recent descriptions [2, 31 based on conventional interacting 
electron theory, but taking into account the temperature dependence of both transverse 
and longitudinal fluctuations in the local magnetization, appear to be very successful in 
describing these phenomena. There are, however, several aspectsofthis approachwhich 
in our opinion have not yet been fully explored. In particular the difference in the 
behaviour of the transverse ( m t )  and longitudinal ( m i )  magnetic fluctuations in the 
ferromagnetic state has not been fully addressed. In this paper we present results of 
an approach based on electron liquid theory [5] which enables us to determine the 
dependence of magnetic fluctuations in a self-consistent way. This approach leads a 
differentialequation for thecoefficientsofthefreeenergyasafunctionofmagnetization 
M and enables us to calculate the spontaneous magnetization, M, as a function of 
temperature. In particular if M O  is the magnetization at zero temperature, we find that 
over a wide range in temperature, T ,  the spontaneous magnetization obeys the mixed 
lawM2/Ma - 1 - !?(T/T1)4'3 - f(T/T.)2.~7eusethisresulttodescribethetemperature 
dependence of the spontaneous magnetization found in the weak itinerant ferromagnet 
ZrZn2 [6 ,7] .  

We begin by writing the free energy per unit volume F/V in the form [4] 
F(T, V ,  M ) / V =  Fo/V+ M M 2  + i y , M 4  (1) 

A = a + 2y,( l  + a/y,M')(m:) + 3y,(l + u /3y ,M2) (mi )  (2) 
y. = G/12p,yiE$. (3) 

G = [ ~ ( P ' / P ) '  - p"/plG 

where Fo is the free energy when M = 0 and A and y. are given by 

In equation (3) 
(4) 
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is a dimensionless quantity characterizing the shape of the density of states, p,  around 
the Fermi level, EF, and xp is the single-particle Pauli susceptibility given by 
xp = 2 p p i .  The first term in equation (2) can be expressed as 

where %+ is the Fermi liquid parameter determining the magnetic state of the system. 
In the case of ZrZn2, %+ is very small and negative (- -0.01) corresponding to ZrZn2 
being a weak ferromagnet. The quantity a+ and the Fermi energy E, set the energy 
scalesfor the physical quantitiesofinterest and, in particular, determine the temperature 
scales which will be used to  determine the various re@ons of different magnetization 
behaviour. 

The thermal variance of the local magnetization (m:) introduced in equation (2) is 
formally given by 

0 M Tolkacheu and N I Yurasou 

a = a+ %xp (5) 

where n(w)  = [exp(fiw/k,T) -I]-] is the Bose factor and XJq, w )  is the generalized 
dynamical wave-vector dependent susceptibility. In these, the subscript U is either 1 or 
11 depending on whether the magnetization fluctuations are perpendicular or parallel to 
the average magnetization M .  

Theapplied magnetic field, B,isobtained bydifferentiatingequation(1) with respect 
to h4 so that 

(7) 
The parallel and perpendicular static susceptibilities are given by x i L  = B/M and 
xrl = aB/aM and so from equation (7) 

B = (l/V) aF(T, V , M ) / a M  = A M  + IM’(aA/aM),, + y,M’. 

XI’ = A  + AM BA/aM + y , M 2  ( 8 )  

These equations indicate the inherent self-consistency needed in the treatment of 
the magnetization problem, for in calculatingA we need (mt) which is related to x i 1  
and thus to A and its derivatives. One is therefore faced with a highly non-linear 
differential equation forA and hence M. Early attempts at solving this or understanding 
the general equation of state given by equation (7) were based on the Stoner model and 
gave estimates for A which were too small [S, 91. Attempts were made to refine the 
theory by including transverse fluctuations [lo], longitudinal fluctuations [3] and a 
temperature dependent cut-off wave vector for the thermally excited modes [3]. Unfor- 
tunately in [3] the assumption that the magnetization dependence of x-’ could be 
approximated by 

in which the parameter q was chosen to be either 1.0 or M*/M;,  was used in order to 
reduce the computation effort. The choice q = 1 corresponds to ignoring the aA/aM 
termsandwas found tolead toafirst-ordertransition [ 3 ] .  Thechoiceq = Odoes however 
lead to a second-order transition but corresponds to treating longitudinal fluctuations in 
the same way as transverse fluctuations. The third choice, q = M2/M:, is an interp- 
olation between the first two, and while numerically giving satisfactory results [3 ]  is 
neither derived nor self-consistent. In this paper we use the results developed in [4] 
where no assumptions about the Mdependence of x(’ were made. Apart from the Curie 
temperature T, this approach leads to two new characteristic temperature scales, i“, and 

xi‘ = A + 2 M a A j a M f 1 M ~ d 2 A I a M ’  + 3 y , M ’ .  (9) 

x i ‘ = a B / a M = A  + ( 1 + 2 q ) y , M 2  (10) 
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q,, associated with the fluctuations perpendicular to and along the direction of the 
average magnetization. As stated before, all these temperature scales can, however, be 
expressed in terms of the Fermi energy and the basic Fermi liquid parameter B+. 

2. Magnetization versus temperature 

In this section we calculate the fluctuations in local magnetization, leading to the 
definition of the three characteristic temperatures TI, T,  and T,-the last being the 
Curie temperature while the others characterize fluctuations perpendicular and parallel 
to the average magnetizationM, respectively. Tocalculate the ( m t )  we use the definition 
in equation (6) with the following approximation for the generalized susceptibilityjn the 
paramagnon regime 

with a quadratic dispersion 

and a linear damping 

We can then write for ( m t )  [4] 

x;’(q, 4 = x;’(d[1 - i 4 r d d I  (11) 

x ; ’ ( d  = x;’ + CO”$ (12) 

r.(d = Yo4X;’(d. (13) 

where qIv  = qsw when v = I and q I v  = 0 when U = 11, yo = 2x,uF/x and COD = 
CO = 1/12k:uF, uF is the Fermi velocity and k, is the Fermi wave number, f i  is the 
electron magnetic moment and qw = M/uFhfip is the wave vector separating the spin 
wave and paramagnon regimes in the excitation spectrum. The upper cut-off q2, varies 
with temperature so as to take into account the growing number of thermally excited 
modes but, as shown in [4], can be effectively set to -in the present calculation. 

By introducing a characteristic correlation length 
I ,  = (COX”)”’ (15) 

we can rewrite equation (14) according to 

with qv = q,J ,  and 

being the crucial parameter controlling the temperature dependence of the fluctuations. 
The characteristic temperature T,  is defined as [4] 

where  CY^ = 4: and all,= 1 due to the different cut-offs in the transverse and longitudinal 
cases. Note thatsince rngenerall, # lllit followsthat TA # ?,.The function Pintroduced 
in equation (16) is given by 

6 ,  = T,/T (17) 

k F T ,  3 h y o c , ~ , / n 1 ~  (18) 

“dx xz 1 
P(a, b) = -~ 

n’ (1 + x’) [l + bx(1 + x’)] 
and in the following discussion we shall make use of the limiting forms for P(g,, &/ap) 

P ( q , ,  6,/n,) = ( 2 6 / 9 ~ ) 6 ; ” ’  6,4 1 (20) 
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leading to the different temperature dependences of (mt) in the different regions. 
Introducing the dimensionless forms ( f i ; )  = (mt)M,',  A? = M/MO and 

fi = A/a  = 1 + 2A?'(l - h?')(tii;) + &'(1 - 3&? ' ) ( f i i )  
where M6 = -a /y.  we have: 
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-I) -n where \xi''/al = 2 - 3G2 t 2MA' t BM-A , and 

Note that in the limit T S  T,,* ( t f i ; )  is independent of U. In equations (22) and (23) we 
have introduced the temperature scales 
kBT,/EF = (6z)'"%+ z = p'/k$(p" - 3p"/p)E~ (23) 
kBT,/EF = (1/~c~)(61%+I~G)"' (25) 
kBTc/EF = ( ~ c ~ % +   CY,)^!^( 1/3d4)zy4 (26) 

(27) 

ru, = 2n1fl/3"1' = 1.228. 
The longitudinal temperature T! is the solution of 

where T,, = (2433+)'j'EF/rr'. From equation (27) TI = T, i f f , ,  3 T,. To ensure both that 
the region T ,  < T < Tu is wide and Tu + T, we require 

(28) 
This condition is in fact a restriction on the value of a+ and for a spherical Fermi surface 
it is equivalent to requiring 7 X lo-" < lB+l < 112 X IO-" while for the 'lens-shaped' 
Fermi surface discussed in [3 ]  it is6 X lo-' < I%+\ < 126 X IO-'. As is shown in 141 one 
can also find similar limits for the case of ZrZn?. While in the spherical and 'lens-shaped' 
cases theleft and right boundsinequation(28)differbyfactorsof 16andZl respectively, 
in the case of ZrZn, the difference was found 10 be lo4. For ZrZn? the region in which 
T ,  < T < T, s T, can therefore be quite wide. 

We now express the magnetization as a function of T using the magnetic equation of 
state given in  equation (7) and the resultspresented above for (6;). To do thiswe divide 
the temperature range into three intervals given below. 

2.1. T < T ,  

Since ( t f i : )  - T 2  we can go to the limit of very low temperatures, which means that we 
can approximate A by [4] 

where 

so that 

With this, it foUows that the solution of equation (2) for the equilibrium value of the 
magnetization is 

(32) 
w h e r e j  B y ~ n l a l - 3 ~ .  

1 - ( T , / T ~  - (T , /T , , )? '~  = 0 

T ,  Q T, Q T,, .  

ii = 1 + f ( M ) ( T / T u ) 2  (29) 

3f(fi) = 5M-' t 4M-4 (30) 

(31) 
~~~ ~~ A = 1 - 1(5 f iW2 t 4 i W 4 ) ( T / T U ) ? .  

M' = 1 - ( T / T u ) 2  + E 
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2.2. Ti< T <  T, 

In this interval (mt)  = (mi) = $(T/TJ' which means that 2 = 1 - (T/TJ*(l  - BA?:) 
and the solution of equation ( 2 )  is now 

A?: = 1 - (T/TJ4j3 + B. (33) 

2.3. T,  < T <  Ti 

In this interval we have in general to solve the full problem but as shown in [4] this can 
be approximated by 

A - 1 - $(T/T$ - ?(T/T,)~/~[I - (i/A?*)]. 

A?, = 1 - $ ( T / T J ,  - ; ( T / T ~ ) ~ / ~  + E 

(34) 

(35) 

The temperature dependence of the magnetization is therefore 

giving a mixed temperature dependence law for the magnetization. 

3. Results and discussion 

In this section we use equations (32). (33) and (34) to describe the temperature depen- 
dence of the spontaneous magnetization found in ZrZn' [e, 71. To do this we have first 
toestimate T,, Tlland Tu. Fromequations(24),(25)and(26) thesecanbeobtainedfrom 
%+. G and E, which in turn can be estimated from a comparison of our theoretical 
expressions for Tc, Mu and xP with the values found experimentally in 161. In particular 
we use T, = 27 K ,  l/ap,, = 0.98 x m3 kg and Mu/pu = 3.2 A d / k g  where p o  is the 
density of ZrZn2 (7.29 and we take the value .EF to be 1 Ryd. According to [4] 
we find that G-' = 0.05 and from equation (26) I%+\ = 6 X lo-! The values of 
the temperatures T,  and Tu &e determined by equations (24) and (25) and we find 
T ,  = 1.5 KandT, = 20.5 K,ToobtainTI1wesolvedequation(27)numericallytoobtain 
'TI = 25 E(. Using these, the predicted temperature dependence of the magnetization in 

Figure 1. This figure gives the magnetization 
dependence (35). which is denoted by the full 
curve, as a function of F. The dependence 
1 - (TIT.)' is shown as a chain curve. The 
broken c u m  represents the dependence M' = 
1 - which arises when the longitudi- 
nal fluctuations T2 are not taken into account. 
The experimental points are taken from [6] .  
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ZrZn, is therefore 

0 M Tolkachev and N I Yurasov 

1 - (T/20.5)’ O K < T <  1.5K 

M?(T) = 1 - t(T/20.5)’ - S(T/27)4i3 1 . 5 K < T < 2 5 K  (36) 

1 - (T/27)‘f3 25 K < T < 27 K I 
with the mixed temperature law holding over most of the temperature range below T,. 

In figure 1 the experimental temperature dependence of the spontaneous mag- 
netization for ZrZn2 from [6] is compared with equation (35). Also plotted are curves 
corresponding to M ( T ) 2  = 1 - (T/T,)’ and M(T)’ = 1 - (T/T$l3. Of these curves, 
equation (35)  clearly provides the best fit to experimental data. 
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